UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts†

نویسندگان

  • Zhenhuan Zhao
  • Jian Tian
  • Dongzhou Wang
  • Xueliang Kang
  • Yuanhua Sang
  • Hong Liu
  • Jiyang Wang
  • Shaowei Chen
  • Robert I. Boughton
  • Huaidong Jiang
چکیده

Surface engineering of TiO2 nanobelts by the controlled assembly of functional heterostructures represents an effective approach for the synthesis of high-performance photocatalysts. In this study, we prepared a novel Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured nanobelt by depositing bismuth hydroxide onto the TiO2 nanobelt surface. A thermal annealing treatment led to the formation of a Bi4Ti3O12 interlayer that functioned as a bridge to link Bi2O3 and TiO2. The double-heterostructured TiO2 nanobelts exhibited better UV light photocatalytic performance than commercial P25. Importantly, the photocatalytic activity in the visible range was markedly better than that of Bi2O3 and Bi2O3/TiO2 heterostructured TiO2 nanobelts. The enhanced performance was accounted for by the material band structures where the matching was improved by the unique interlayer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PdO/TiO2 and Pd/TiO2 heterostructured nanobelts with enhanced photocatalytic activity.

Heterostructures play an important role not only in the manufacture of semiconductor devices, but also in the field of catalysis. Herein, we report the synthesis of PdO/TiO2 and Pd/TiO2 heterostructured nanobelts by means of a simple co-precipitation method, followed by a reduction process using surface-modified TiO2 nanobelts as templates. The as-obtained heterostructures were characterized by...

متن کامل

Bismuth titanate nanobelts through a low-temperature nanoscale solid-state reaction

In this study, an effective low-temperature method was developed, for the first time, for the synthesis of bismuth titanate nanobelts by using Na2Ti3O7 nanobelts as the reactants and templates. The experimental procedure was based on ion substitution followed by a nanoscale solid-state reaction. In the first step, Na2Ti3O7 nanobelts were soaked in a bismuth nitrate solution where ion substituti...

متن کامل

Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform...

متن کامل

Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity.

A novel scaly Sn3O4/TiO2 nanobelt heterostructured photocatalyst was fabricated via a facile hydrothermal route. The scaly Sn3O4 nanoflakes can be synthesized in situ and assembled on surface coarsened TiO2 nanobelts through a hydrothermal process. The morphology and distribution of Sn3O4 nanoflakes can be well-controlled by simply tuning the Sn/Ti molar ratio of the reactants. Compared with si...

متن کامل

Phase transformation and enhanced photocatalytic activity of S-doped Ag2O/TiO2 heterostructured nanobelts.

Ag2O/TiO2 nanobelt heterostructures have been found to possess high ultraviolet photocatalytic activity, but a poor cycling performance. After a S-doping treatment, the obtained Ag2O/Ag2S2O7/TiO2 heterostructured nanobelts exhibited an enhanced and stable photocatalytic activity under both ultraviolet and visible light irradiation, which was exemplified by photo-degradation of organic pollutant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012